0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Контактная система зажигания автомобиля

Система зажигания является составной частью «Электрооборудования автомобиля».

Если Вы посмотрите на рабочий цикл двигателя, то заметите, что в самом конце такта сжатия, рабочую смесь необходимо поджечь. А это означает, что между электродами свечи должна проскочить высоковольтная искра.

Функция системы зажигания заключается в том, чтобы создать ток высокого напряжения, а затем распределить его по свечам цилиндров. Различают два типа систем зажигания: контактная система и бесконтактная электронная система.

Контактная система зажигания.

Схема работы контактной системы зажигания изображена на рисунке 6.1. Рис. 6.1 Контактная система зажигания а) электрическая цепь низкого напряжения 1 — «масса» автомобиля; 2 — аккумуляторная батарея; 3 — контакты замка зажигания; 4 — катушка зажигания; 5 — первичная обмотка (низкого напряжения); 6 — конденсатор; 7 — подвижный контакт прерывателя; 8 — неподвижный контакт прерывателя; 9 — кулачек прерывателя; 10 — молоточек контактов Рис. 6.1 Контактная система зажигания б) электрическая цепь высокого напряжения 1 — катушка зажигания; 2 — вторичная обмотка (высокого напряжения); 3 — высоковольтный провод катушки зажигания; 4 — крышка распределителя тока высокого напряжения; 5 — высоковольтные провода свечей зажигания; 6 — свечи зажигания; 7 — распределитель тока высокого напряжения («бегунок»); 8 — резистор; 9 — центральный контакт распределителя; 10 — боковые контакты крышки

    Составляющие контактной системы зажигания:
  • катушки зажигания,
  • прерыватель тока низкого напряжения,
  • распределитель тока высокого напряжения
  • вакуумный и центробежный регуляторы опережения зажигания,
  • свечи зажигания,
  • провода низкого и высокого напряжения,
  • включатель зажигания.

При помощи катушки зажигания ток низкого напряжения переходит в ток высокого напряжения. Принцип работы: вокруг обмотки низкого напряжения создается магнитное поле из-за протекающего электрического тока. Далее, ток прерывается, магнитное поле начинает слабеть и при этом, индуцировать ток высокого напряжение (уже в обмотке высокого напряжения). Количество витков обмоток катушки зажигания разное. За счет этого мы получаем 20 000 вольт, которые нужны для того, чтобы между свечами зажигания возникла искра.

Прерыватель тока низкого напряжения как раз и служит для прерывания тока в обмотке низкого напряжения. И когда во вторичной обмотке, как было сказано выше, появился ток высокого напряжения, то он поступает в центральный контакт распределителя. Под крышкой распределителя зажигания располагаются контакты прерывателя. Эти два контакта смыкаются при помощи пластинчатой пружины. А разделяются в тот момент, когда набегающий кулачок приводного валика прерывателя-распределителя давит на молоточек подвижного контакта. Здесь важную роль играет конденсатор. Он не дает контактам обгорать в момент размыкания.

Прерыватель и распределитель токов высокого и низкого напряжения изображены на рисунке 6.2. У них привод от коленчатого вала, и расположены они в одном корпусе. Этот узел также называют трамблером. Рис. 6.2 Прерыватель распределитель 1 — диафрагма вакуумного регулятора; 2 — корпус вакуумного регулятора; 3 — тяга; 4 — опорная пластина; 5 — ротор распределителя («бегунок»); 6 — боковой контакт крышки; 7 — центральный контакт крышки; 8 — контактный уголек; 9 — резистор; 10 — наружный контакт пластины ротора; 11 — крышка распределителя; 12 — пластина центробежного регулятора; 13 — кулачек прерывателя; 14 — грузик; 15 -контактная группа; 16 — подвижная пластина прерывателя; 17 — винт крепления контактной группы; 18 — паз для регулировки зазоров в контактах; 19 — конденсатор; 20 — корпус прерывателя-распределителя; 21 — приводной валик; 22 — фильц для смазки кулачка

Итак, после поступления тока высокого напряжения в центральный контакт распределителя через подпружиненный контактный уголек он попадает на пластину ротора (распределителя, рис. 6.1 и 6.2). Ротор вращается, ток «уходит» с его пластины на боковые контакты крышки распределителя. Контакты соединены высоковольтными проводами в определенной последовательности. Эта последовательность задает работу цилиндров в порядке 1, 3, 4, 2. То есть, рабочая смесь воспламеняется сначала в 1-ом, затем в 3-ем, 4-ом и 2-ои цилиндрах. Таким образом, устанавливается равномерная нагрузка на коленчатый вал двигателя.

Существует понятие угол опережения зажигания. Это тот угол, когда поршень не доходит до верхней мертвой точки. Он равен 40-60 градусам. И в этот момент осуществляется подача высокого напряжения на электроды свечей зажигания. Угол нужно постоянно менять, так как режимы работы двигателя тоже меняются. За это отвечают центробежный и вакуумный регуляторы опережения зажигания.

Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания, в зависимости от скорости вращения коленчатого вала двигателя. Схема работы представлена на рисунке 6.3. Рис. 6.3. Схема работы центробежного регулятора угла опережения зажигания а) расположение деталей регулятора 1 — кулачок прерывателя; 2 — втулка кулачков; 3 — подвижная пластина; 4 — грузики; 5 — шипы грузиков; 6 — опорная пластина; 7 — приводной валик; 8 — стяжные пружины Рис. 6.3. Схема работы центробежного регулятора угла опережения зажигания б) грузики вместе в) грузики разошлись

Центробежный регулятор опережения зажигания состоит из двух плоских металлических грузиков. Оба грузика прикреплены к опорной пластине, а пластина соединена с приводным валиком. На грузиках есть шипы, которые входят в прорези подвижной пластины. На пластине крепится втулка кулачков прерывателя. Втулка и пластина поворачиваются на некоторый угол по отношению к трамблеру. Вследствие увеличения числа оборотов коленчатого вала, увеличивается частота вращения валика прерывателя-распределителя. При этом грузики расходятся в сторону, двигают втулку от приводного валика. Контакты размыкаются раньше, угол опережения зажигания увеличивается. Когда скорость вращения приводного валика уменьшается, то грузики возвращаются на место и угол опережения тоже уменьшается.

Вакуумный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания, в зависимости от нагрузки на двигатель. Вакуумный регулятор представлен на рисунке 6.4. Рис. 6.4. Вакуумный регулятор угла опережения зажигания а) угол опережения зажигания — уменьшен б) угол опережения зажигания — увеличен

Вакуумный регулятор прикреплен к корпусу прерывателя – распределителя (рис. 6.2). Диафрагмой корпус поделен на две половины. Одна половина связана с атмосферой, а другая с полостью под дроссельной заслонкой. Диафрагма посредством тяги соединена с подвижной пластиной, с расположенными на ней контактами прерывателя. Когда угол открытия дроссельной заслонки увеличивается, то уменьшается разряжение. При этом диафрагма под действием пружины сдвигает пластину от набегающего кулачка прерывателя. Угол опережения зажигания уменьшится – контакты разъединяться позже. Угол увеличится при закрытии дроссельной заслонки. Кулачок прерывателя встретится с молоточком контактов раньше, и контакты разомкнуться. Увеличится опережения зажигания для рабочей смеси Рис. 6.5. Свеча зажигания 1 — контактная гайка; 2 — изолятор; 3 — корпус; 4 — уплотнительное кольцо; 5 — центральный электрод; 6 — боковой электрод

С помощью свечи зажигания (рис. 6.5) образуется искра и зажигается рабочая смесь в камере сгорания двигателя. При попадании тока высокого напряжения на свечу, между ее электродами образуется искра. Она и воспламеняет рабочую смесь.

Высоковольтные провода обеспечивают подачу тока высокого напряжения от катушки зажигания к распределителю и от него на свечи.

Основные неисправности контактной системы зажигания

Отсутствует искра между электродами свечей. Причина: обрыв или плохой контакт проводов в цепи низкого напряжения, обгорание контактов прерывателя или отсутствия зазора между ними, неисправность конденсатора, катушки зажигания, крышки распределителя, ротора, высоковольтных проводов или самой свечи. Способ устранения неисправности: проверка цепи низкого и высокого напряжения, регулировка зазора контактов прерывателя, неисправные элементы системы зажигания необходимо заменить.

Двигатель работает с перебоями и (или) не развивает полной мощности. Причина: неисправная свеча зажигания, нарушение величины зазора в контактах прерывателя или между электродами свечей, повреждение ротора или крышки распределителя, неправильная установка начального угла опережения зажигания. Способ устранения неисправности: восстановление нормальных зазоров в контактах прерывателя и между электродами свечей, регулировка начального угла опережения зажигания, замена неисправных деталей.

Электронная бесконтактная система зажигания.

В электронной бесконтактной системе зажигания имеется возможность увеличения подаваемого напряжения на электроды свечи. Таким образом, улучшается процесс воспламенения рабочей смеси.

При использовании электронной бесконтактной системы зажигания, двигатель более экономно расходует топливные ресурсы. У этой системы зажигания также есть цепи высокого и низкого напряжения. Цепи высокого напряжения ничем не отличаются от цепей вышеописанной системы. Имеются различия между цепями низкого напряжения. Отличие заключается в том, что в электронной бесконтактной системе зажигания используются электронные устройства – коммутатор и датчик-распределитель (датчик Холла) (рисунок 6.6). Рис. 6.6. Бесконтактная система зажигания а) схема электрической цепи низкого напряжения 1 — аккумуляторная батарея; 2 — контакты замка зажигания; 3 — транзисторный коммутатор; 4 — датчик распределитель (датчик Холла); 5 — катушка зажигания Рис. 6.6. Бесконтактная система зажигания б) схема электрических соединений коммутатора и датчика-распределителя

    Элементы электронной бесконтактной системы зажигания это:
  • источники электрического тока,
  • катушку зажигания,
  • датчик — распределитель,
  • коммутатор,
  • свечи зажигания,
  • провода высокого и низкого напряжения,
  • выключатель зажигания.

Бесконтактный датчик Холла, выполняющий функцию контактов, посылает управляющие импульсы в электронный коммутатор, который управляет катушкой зажигания. Катушка зажигания, в свою очередь, преобразует ток низкого напряжения в ток высокого напряжения. И мы получаем 20 000 вольт, необходимые для возникновения искры.

Основные неисправности электронной бесконтактной системы зажигания.

Неисправности: не заводится двигатель. Способы устранения: проверить подачу бензина, почистить провода (контакты), заменить неисправный коммутатор, проверить и заменить в случае неисправности деталей крышку распределителя, ротор, бесконтактный датчик и катушку зажигания.

Сайт о внедорожниках УАЗ, ГАЗ, SUV, CUV, кроссоверах, вездеходах

Контактная система зажигания автомобилей УАЗ с обычным электрооборудованием могла включать в себя распределитель зажигания Р119-Б, катушку зажигания Б115-В, свечи зажигания А11-У и выключатель зажигания ВК330.

Контактная система зажигания УАЗ с экранированным электрооборудованием могла включать в себя распределитель зажигания Р132 или Р103, катушку зажигания Б5-А или Б102-Б, свечи зажигания СН302-Б или СН433, выключатель зажигания ВК330 и дополнительный резистор СЭ40-А.

Контактная система зажигания УАЗ, состав и общее устройство.
Принципиальная схема контактной системы зажигания УАЗ.

Схемы контактных систем зажигания автомобилей УАЗ с обычным и экранированным электрооборудованием.

Распределитель зажигания Р119-Б.

Контактная система зажигания включает в себя распределитель зажигания который служит для прерывания тока в первичной цепи катушки зажигания, распределения высокого напряжения по свечам зажигания и изменения угла опережения зажигания в зависимости от частоты вращения коленчатого вала и нагрузки двигателя. Он состоит из прерывателя, распределителя, центробежного и вакуумного регуляторов опережения зажигания, конденсатора и октан корректора.

Прерыватель включает в себя корпус, приводной валик с четырехгранным кулачком и подвижную пластину с установленными на ней контактами. Неподвижным, соединенным с массой, и подвижным в виде молоточка, изолированного от массы и соединенного проводником с изолированным выводом низкого напряжения, а также фетровой вставкой для смазки кулачка.

Подвижная пластина соединена тягой с вакуумным регулятором, предназначенным для изменения угла опережения зажигания в зависимости от нагрузки двигателя. Регулировка зазора между контактами осуществляется перемещением стойки неподвижного контакта прерывателя с помощью отвертки, устанавливаемой в паз регулировочного винта.

Распределитель включает в себя ротор с токоразносной пластиной и крышку с боковыми и центральным электродами. Центральный электрод содержит контактный уголек. Ротор вращается вместе с кулачком прерывателя. Центральный электрод соединен высоковольтным проводом с катушкой зажигания. Боковые электроды соединены высоковольтными проводами со свечами зажигания в соответствии с порядком работы цилиндров двигателя.

Ток высокого напряжения от катушки зажигания поступает через контактный уголек на разносную пластину ротора, а от нее через боковые электроды по проводам высокого напряжения на свечи зажигания. С помощью октан-корректора установленного на корпусе прерывателя, производится ручная корректировка угла опережения зажигания.

Распределитель зажигания Р132.

Имеет одинаковую с распределителем Р119-Б конструкцию и отличается от него наличием защитного экрана и характеристикой центробежного регулятора.

Центробежный, вакуумный регуляторы и октан-корректор.

Служат для регулировки угла опережения зажигания. Опережением зажигания называется воспламенение рабочей смеси до момента достижения поршнем верхней мертвой точки ВМТ в такте сжатия. Поскольку время горения рабочей смеси практически неизменно, то с увеличением частоты вращения коленчатого вала поршень за время сгорания смеси успевает после прохождения ВМТ, отойти от ВМТ на большую величину, чем при малой частоте вращения коленчатого вала.

Смесь будет сгорать в большем объеме, давление газов на поршень уменьшится, двигатель не будет развивать полной мощности. Поэтому с увеличением частоты вращения коленчатого вала рабочую смесь нужно воспламенять раньше, до подхода поршня к ВМТ, чтобы обеспечить полное сгорание смеси к моменту перехода поршнем ВМТ при наименьшем объеме. Кроме того, при одной и той же частоте вращения коленчатого вала опережение зажигания должно уменьшаться с открытием дроссельных заслонок и увеличиваться при их закрытии.

Это объясняется тем, что при открытии дроссельных заслонок увеличивается количество смеси, поступающей в цилиндры, и одновременно уменьшается количество остаточных газов, вследствие чего повышается скорость сгорания смеси. И наоборот — при закрытии дроссельных заслонок скорость сгорания смеси уменьшается.

Опережение зажигания автоматически изменяется в зависимости от частоты вращения коленчатого вала с помощью центробежного регулятора. Он состоит из двух грузиков, которые надеваются на оси, укрепленные на пластине валика, и стягиваются двумя пружинами. При повышении частоты вращения вала грузики под действием центробежной силы расходятся в стороны и поворачивают планку с кулачком в сторону его вращения на некоторый угол, чем и обеспечивается более раннее размыкание контактов прерывателя, то есть большее опережение зажигания.

Автоматическое регулирование опережения зажигания в зависимости от степени открытия дроссельных заслонок осуществляется с помощью вакуумного регулятора. Диафрагма регулятора отжимается в сторону прерывателя пружиной. Полость с одной стороны диафрагмы сообщена с атмосферой, а с другой с помощью штуцера и трубопровода — с карбюратором.

При закрытии дроссельных заслонок разрежение в корпусе вакуумного регулятора увеличивается. Диафрагма преодолевая сопротивление пружины, прогибается наружу и через тягу поворачивает подвижную пластину в сторону увеличения опережения зажигания. При открытии заслонок диафрагма выгибается в другую сторону, поворачивая пластину в сторону уменьшения опережения зажигания.

Для ручной регулировки опережения зажигания в зависимости от октанового числа топлива применяется октан-корректор. Угол опережения зажигания изменяется при повороте корпуса распределителя относительно валика распределителя с помощью гаек. На неподвижной пластине октан-корректора имеются деления с обозначениями +10, -10. При перемещении подвижной пластины вместе с корпусом распределителя в сторону «плюс», устанавливается более раннее зажигание. При перемещении в сторону «минус» — более позднее.

Катушки зажигания Б115-В и Б5-А.

Контактная система зажигания УАЗ может быть оснащена одной из этих катушек. Они имеют одинаковую конструкцию и отличаются друг от друга отсутствием у катушки Б5-А дополнительного резистора, размещенного на корпусе катушки Б115-B. Кроме того, катушка Б5-А имеет экран. Катушка зажигания состоит из сердечника с надетой на него изолирующей втулкой, на которую наматывается вторичная и поверх нее первичная обмотки, фарфорового изолятора, крышки с выводами и корпуса с магнитопроводом. Внутренняя полость катушки заполняется трансформаторным маслом, что улучшает изоляцию моток и уменьшает нагрев катушки.

Свеча зажигания А11У.

Состоит из стального корпуса, керамического изолятора, внутри которого размещен центральный электрод, уппотнителя и бокового электрода. В наконечнике высоковольтного провода, подключаемого к свече, установлен резистор для подавления радиопомех.

Экранированная свеча зажигания СН302-Б.

В комплект экранированной свечи зажигания СН302-Б входят уппотнительная резиновая втулка, герметизирующая ввод провода в свечу, керамическая изоляционная втулка экрана и керамический вкладыш со встроенным резистором для подавления радиопомех. Соединение высоковольтного провода с эпектродом вкладыша осуществляется следующим образом.

На конец провода высокого напряжения, выходящего из экранирующей оплетки, надевается резиновая уплотнительная втулка свечи, а затем провод вводится в контактное устройство. Жила провода, оголенная по длине на 8 мм, вставляется в отверстие втулки, развальцованной в донышке керамического стаканчика контактного устройства, и распушается так, чтобы контактное устройство было зажато на проводе.

Контактная система зажигания недостатки.

Контактная система зажигания имеет ряд недостатков. Самый большой из них подгорание контактов, для предотвращение которого необходимо снижение тока первичной обмотки катушки. По этой причине при контактной системе зажигания имеется ограничение вторичного напряжения. Кроме этого при повышении числа оборотов происходит снижение вторичного напряжения, так как снижается время замкнутого состояния контактов. По этой же причине снижается вторичное напряжение при увеличении числа цилиндров. В процессе развития эти недостатки устранялись в других системах, контактно-транзисторной и бесконтактной.

Устройство автомобилей

Система зажигания двигателя с принудительным воспламенением рабочей смеси должна обеспечить увеличение напряжения аккумуляторной батареи или генератора (в зависимости от режима работы двигателя) до величины, необходимой для возникновения электрического разряда между электродами свечи зажигания, и в требуемый момент (момент зажигания) подать это напряжение на соответствующую свечу. Момент зажигания характеризуется углом опережения зажигания, который представляет собой угол поворота коленчатого вала двигателя, отсчитываемый от положения вала в момент подачи искры до положения, когда поршень приходит в верхнюю мёртвую точку (ВМТ).

Применявшиеся ранее и применяемые в настоящее время системы зажигания получают необходимую высоковольтную энергию не непосредственно от аккумуляторной батареи, поскольку для пробоя электрической дугой воздушного зазора между электродами свечи зажигания напряжения 12-вольтовой батареи явно не хватит.
Для возникновения дуги между электродами свечи зажигания требуется напряжение не менее 8000 В, а при многих режимах работы двигателя значительно большее. По этой причине необходимо существенно увеличить напряжение аккумуляторной батареи посредством промежуточного преобразователя и накопителя энергии, который, в зависимости от способа преобразования и аккумулирования энергии, может быть индуктивным или емкостным.

В системах зажигания автомобильных двигателей наиболее широко используются индуктивные накопители электрической энергии, использующие в своей работе явление самоиндукции, возникающее в трансформаторе при прохождении через одну из его обмоток переменного тока.
Возникает вопрос – откуда в бортовой сети автомобиля с неработающим двигателем, может появиться переменный ток? Ведь аккумуляторная батарея – источник постоянного тока.

Для ответа на этот вопрос следует вспомнить – что, по определению, называется переменным электрическим током? Это ток, который с течением времени изменяется по величине и (или) по направлению. Следовательно, если цепь, соединяющую выводы аккумуляторной батареи, периодически выключать и включать, то в периоды нарастания тока и его исчезновения (которые характеризуются определенными временными отрезками) в цепи протекает именно переменный ток, изменяющийся с течением времени по величине (от нуля до 12 вольт и наоборот). А раз в цепи присутствует переменный ток, то посредством явлений индукции и самоиндукции его напряжение можно изменять по величине до требуемого значения.

Именно это свойство переменного тока используется во всех известных системах зажигания. Разница заключается лишь в использовании прерывателей и накопителей электроэнергии различных принципиальных конструкций, способных эффективно отдать накопленную энергию для возникновения дуги между электродами свечи.

Контактная система зажигания использует для своей работы механические прерыватели тока, принцип действия которых основан на включении и отключении контактов посредством механического датчика кулачкового типа, приводимого в действие от распределительного вала ГРМ.

Принцип работы контактной системы зажигания

Батарейное зажигание в том виде, в котором оно появилось на первых автомобилях, долгое время было единственным способом воспламенения рабочей смеси в цилиндрах бензиновых и газовых двигателей.

Рассмотрим принцип действия контактной (классической) системы зажигания, в которую обязательно входят катушка зажигания, прерыватель, распределитель, конденсатор, свечи зажигания, ну и, конечно же, электрические провода – низковольтные и высоковольтные.

Катушка зажигания представляет собой простейший трансформатор, состоящий из сердечника, на который намотаны две обмотки — первичная и вторичная, имеющие различное количество витков.
Первичная обмотка содержит относительно небольшое количество витков сравнительно толстой проволоки, а вторичная – очень большое число витков тонкой проволоки. Напряжение, возникающее на выводах вторичной обмотки, пропорционально соотношению числа витков вторичной и первичной обмоток.

Известный закон М. Фарадея о явлении электромагнитной индукции утверждает, что если первичная обмотка трансформатора содержит, например, 10 витков, а вторичная обмотка этого трансформатора – 100 витков (т. е. в десять раз больше), то напряжение на выводах вторичной обмотки при протекании через первичную обмотку переменного тока будет в десять раз больше, чем напряжение в первичной обмотке. И если правильно подобрать соотношение числа витков первичной и вторичной обмоток, напряжение на выходе из катушки будет достаточным для возникновения электрической дуги (искры) между электродами свечи зажигания, поджигающей рабочую смесь в цилиндре двигателя.

Описанное выше свойство трансформатора напряжения лежит в принципиальной основе работы накопителей энергии, используемых в системах зажигания двигателей всех известных типов.

Простейший прерыватель контактной системы зажигания представляет собой устройство, состоящее из вращающегося кулачка, на который опирается подвижный контакт, соединенный с положительным выводом электрической цепи, и неподвижного контакта, соединенного с массой (отрицательным выводом) аккумуляторной батареи.
При вращении кулачка контакты размыкают и замыкают цепь первичной обмотки катушки зажигания, питаемой от аккумуляторной батареи или генератора. При замыкании и размыкании контактов в первичной обмотке катушки зажигания возникает переменный ток, в результате чего во вторичной обмотке индуцируется очень большое напряжение, достигающее нескольких тысяч (и даже десятков тысяч) вольт. Этого напряжения достаточно для пробоя искрового промежутка между электродами свечи зажигания.

Возникает вполне предсказуемый вопрос — зачем в описанной выше системе зажигания используется конденсатор?
Ответ достаточно прост — для спасения сопрягаемых поверхностей контактов механического прерывателя от электромеханической эрозии, и для поглощения высокочастотных импульсов, способных стимулировать радиопомехи.
ЭДС самоиндукции, индуктируемая при размыкании контактов в первичной обмотке катушки зажигания, достигает внушительных значений (порядка нескольких сотен вольт) и направлена в ту же сторону, что и первичный ток, стремясь задержать его исчезновение.
В результате между размыкающимися контактами прерывателя возникает сильный дуговой разряд, интенсивно разрушающий контакты посредством электротехнической эрозии и механического износа.
Для уменьшения вредного воздействия ЭДС самоиндукции параллельно контактам прерывателя включают конденсатор , который поглощает ток самоиндукции, а затем разряжается через цепь первичной обмотки катушки зажигания в аккумуляторную батарею.
Таким образом, конденсатор служит для уменьшения дугового разряда возникающего между контактами прерывателя и пагубно сказывающегося на сроке их службы.

В общем случае работу контактной системы зажигания можно разделить на три этапа:

  • Замыкание контактов прерывателя и нарастания первичного тока;
  • Размыкание контактов прерывателя и индуцирование вторичного напряжения;
  • Искровой разряд между электродами свечи зажигания.

Замыкание контактов прерывателя (первый этап)

В этот период первичная обмотка катушки зажигания (накопителя) подключается к источнику тока (аккумулятору или генераторной установке). Данный этап характеризуется нарастанием первичного тока и, и как следствие этого, накоплением электромагнитной энергии, запасаемой в магнитном поле катушки зажигания.

Процесс нарастания первичного тока (напряжения аккумуляторной батареи), в соответствии со вторым законом Кирхгофа, пропорционален индуктивности первичной цепи, току в первичной цепи и омическому сопротивлению первичной цепи. При этом скорость нарастания первичного тока не зависит от сопротивления первичной цепи.

Очевидно, что количество аккумулируемой в период замкнутого состояния контактов энергии пропорционально величине напряжения и тока в первичной цепи, а также времени замкнутого состояния контактов прерывателя. Время замкнутого состояния контактов зависит от частоты вращения коленчатого вала двигателя и от формы кулачка прерывателя.

Размыкание контактов прерывателя (второй этап)

В какой-то момент времени контакты прерывателя размыкаются, и источник тока отключается от катушки зажигания. Первичный ток исчезает, в результате чего накопленная электромагнитная энергия превращается в электростатическую энергию, вызывающую ЭДС высокого напряжения во вторичной обмотке катушки зажигания.

Величина тока разрыва при прочих равных условиях зависит от времени замкнутого состояния контактов прерывателя. Это время, в свою очередь, зависит от частоты вращения коленчатого вала двигателя, числа цилиндров двигателя (т. е. профиля кулачка), а также соотношения между углами замкнутого и разомкнутого состояния контактов.

Таким образом, ток разрыва в первичной цепи уменьшается с увеличением частоты вращения коленчатого вала и числа цилиндров двигателя, и увеличивается с увеличением времени замкнутого состояния контактов, которое определяется формой кулачка.

Искровой разряд между электродами свечи зажигания (заключительный, третий этап)

В рабочих условиях при определенном значении напряжения происходит пробой воздушного промежутка (зазора) между электродами свечи зажигания с последующим разрядным процессом в виде электрической дуги, воспламеняющей рабочую смесь в камере сгорания двигателя.

Общее устройство батарейной системы зажигания

Батарейная система зажигания с накоплением энергии включает в себя следующие элементы:

  • Источник тока, функцию которого выполняет аккумуляторная батарея или генератор;
  • Выключатель цепи питания, функцию которого выполняет замок зажигания;
  • Датчик-синхронизатор, который механически связан с коленчатым или распределительным валом ГРМ двигателя, и определяет положение поршней и клапанов каждого цилиндра двигателя в данный момент времени;
  • Регулятор момента зажигания, который механическим, пневматическим или электрическим способом определяет момент подачи искры в зависимости от частоты коленчатого вала или нагрузки двигателя;
  • Источник высокого напряжения, содержащий накопитель энергии и преобразователь низкого напряжения в высокое, функцию которых выполняет катушка зажигания или преобразователь напряжения (в тиристорных системах зажигания);
  • Силовое реле, которое представляет собой электромеханический ключ (контакты прерывателя) или электронный ключ (мощный транзистор, микросхема или тиристор), управляемый регулятором момента зажигания и служащий для подключения и отключения источника тока к накопителю, т. е. управляет процессами накопления и преобразования энергии;
  • Распределитель импульсов высокого напряжения, который механическим, электромеханическим либо электронным способом распределяет высокое напряжение по соответствующим цилиндрам двигателя;
  • Элементы помехоподавления, функции которых выполняют экранированные провода, конденсаторы или резисторы, размещенные либо в распределителе, либо в наконечниках свечей зажигания, либо в высоковольтных проводах, и служащие для угнетения помех, препятствующих нормальной работе радиоаппаратуры и электронных блоков управления (ЭБУ) системами двигателя и автомобиля;
  • Свечи зажигания, которые служат для образования искрового разряда и поджигания рабочей смеси в камерах сгорания цилиндров двигателя.

Особенности устройства тиристорной системы зажигания

Конденсаторные (тиристорные) системы зажигания отличаются от рассмотренных выше тем, что для аккумулирования высоковольтной электрической энергии в них используются емкостные накопители – конденсаторы. В отличие от индуктивных (трансформаторных) накопителей емкостные накопители обладают высоким быстродействием. Индукторные накопители подвержены воздействию инерционных факторов, замедляющих процессы накопления энергии в катушке зажигания.

Для высокооборотистых двигателей (например, двигателей спортивных и гоночных автомобилей) это свойство индукторных накопителей неприемлемо по понятным причинам – высоковольтная электроэнергия здесь должна преобразовываться и аккумулироваться очень быстро, и моментально отдаваться для получения искры, поджигающей горючую смесь.
Емкостные накопители лишены инертных недостатков – энергия в конденсаторе накапливается практически мгновенно, и так же быстро отдается в высоковольтную цепь системы зажигания. При этом величина накопленной таким образом энергии совершенно не зависит от частоты вращения коленчатого вала двигателя из-за высокой скорости накопления энергии конденсатором.

Но, как говорится, не бывает добра без худа.
Искровой разряд, возникающий на электродах свечей в конденсаторных системах зажигания, имеет очень короткий период действия, из-за чего не всегда успевает поджечь рабочую смесь должным образом. Результат – неполное сгорание рабочей смеси, снижение КПД и эффективной мощности двигателя, снижение его экологической чистоты. По этой причине контактные системы зажигания с емкостными накопителями (тиристорные, конденсаторные) имеют узкий спектр применения (высокооборотистые двигатели – роторные, роторно-поршневые, поршневые двигатели спортивных автомобилей, мотоциклов и т. п.).
На следующей странице тиристорные системы зажигания описаны более подробно.

Устройство и принцип действия типовой системы зажигания

С технической стороны система зажигания входит в комплекс электрооборудования двигателя. Конструктивно она состоит из следующих элементов:

  • Аккумулятор или другой источник питания. Он подает в сеть низкое напряжение 12 вольт.
  • Переключатель. При повороте ключа переключатель замыкается и низкое напряжение поступает в накопитель энергии.
  • Накопитель энергии. Бывает двух видов: индуктивный (катушка зажигания трансформаторного типа, преобразующая низкое напряжение в высокое до 30 тысяч вольт) и емкостной (конденсатор).
  • Блок управления аккумулированием и распределением энергии. В зависимости от типа системы зажигания это может быть прерыватель, транзисторный коммутатор или ЭБУ (электронный блок управления).
  • Распределитель. Этот узел может быть механическим или электронным. Он осуществляет снабжение определенных свечей энергией в заданный момент времени.
  • Провода цепи высокого напряжения. По ним поступает высокое напряжение к электродам свечей.
  • Свечи зажигания.

Работа системы зажигания основана на следующем принципе: при подаче в сеть низковольтного напряжения, происходит накопление и преобразование энергии, что затем распределяется по свечам, на электродах которых формируется искра, провоцирующая воспламенение топливовоздушной смеси.

Принцип действия контактной системы зажигания

На основной массе «классических» автомобилей ВАЗ 2101, 2102, 2103, 2104, 2105, 2106, 2107, 2121 установлена контактная система зажигания. Контактная — так как в основе ее работы лежит размыкание контактов прерывателя в трамблере. Зная ее принцип действия и порядок работы можно быстро и эффективно устранять многие неполадки в работе двигателя автомобиля и самой системы.

Контактная система зажигания карбюраторного двигателя автомобилей ВАЗ

Устройство контактной системы зажигания автомобилей ВАЗ 2101, 2102, 2103, 2104, 2105, 2106, 2107, 2121

Контактная система перечисленных выше автомобилей имеет две электрических цепи: низкого и высокого напряжения (первичная и вторичная цепи). Цепь низкого напряжения — это:

АКБ —
— вывод «30» генератора —
— монтажный блок предохранителей и реле —
— замок зажигания —
— первичная обмотка катушки зажигания (вывод «Б») —
— вывод прерывателя в трамблере (контакты).

На автомобилях ВАЗ 2101, 2102, 2103, 2106, 2121 монтажный блок в цепь низкого напряжения не входит.

Цепь высокого напряжения:

Вторичная обмотка катушки зажигания —
— центральный высоковольтный провод от катушки зажигания к крышке трамблера —
— распределитель зажигания —
— высоковольтные провода к свечам зажигания —
— свечи зажигания.

Откуда приходит электрический ток в контактную систему зажигания

Электрический ток в систему зажигания поступает с аккумуляторной батареи через первичную цепь или, когда напряжение выдаваемое генератором становится выше напряжения АКБ, то с вывода «30» генератора так же через первичную цепь.

Принцип действия контактной системы зажигания

Электрический ток протекая по первичной обмотке катушки зажигания создает вокруг ее витков сильное магнитное поле. Когда контакты прерывателя под действием четырехгранного кулачка на валу трамблера размыкаются, ток в первичной обмотке исчезает. Магнитное силовое поле резко сокращается и пересекая витки первичной и вторичной обмоток катушки зажигания, индуктирует в них ЭДС, пропорциональную числу витков. ЭДС во вторичной обмотке катушки достигает значения 12000 — 24000 В.

Через вторичную цепь этот электрический ток высокого напряжения поступает на свечи зажигания, создавая искру между их контактами, тем самым воспламеняя топливную смесь.

Схемы контактных систем зажигания
Примечания и дополнения

— ЭДС (электродвижущая сила) физическая величина характеризующая действие сторонних сил в источнике тока, измеряемая в вольтах. Она появляется в источниках тока при возникновении изменения в магнитном поле.

Устройство контактной системы зажигания

В конструкцию контактной схемы зажигания включены следующие компоненты:

регуляторы, центробежный и вакуумный (ЦР и ВР);

высоковольтные провода (ВП).

Катушка зажигания (КЗ) с двумя обмотками позволяет путем преобразования низкого напряжения получать высокий ток.

Механический прерыватель (МП) конструктивно выполнен вместе механическим распределителем (МР) в одном корпусе — трамблере. Он обеспечивает размыкание первичной обмотки КЗ.

Механический распределитель (МР) в виде ротора с контактной крышкой распределяет тока к свечам.

Центробежный регулятор (ЦР) позволяет изменять пропорционально величине оборотов коленвала угол опережения (УОЗ). Конструктивно ЦР выполнен в виде двух грузиков. В процессе вращения они воздействуют на подвижную пластинку, на которой находятся кулачки МП.

Вакуумный регулятор (ВР) выполняет корректировки величины угла опережения (УОЗ) в зависимости от нагрузки. При изменении положения дроссельной заслонки (ДЗ) меняется давление в полости за ДЗ. ВР реагирует на степень разряжения и корректирует величину УОЗ.

Бесконтактная система (БСЗ)

Штатно устанавливается на переднеприводные авто. Может быть поставлена на автомобиль оснащенный КСЗ — замена не требует дополнительных переделок.

Плюсы

Первое — ток подается на первичную обмотку катушки зажигания через полупроводниковый коммутатор, что позволяет обеспечить гораздо большую энергию искры за счет возможности получения большего напряжения на вторичной обмотке катушки зажигания (до 10 кВ).

Второе — электромагнитный формирователь импульсов, функционально заменяющий КГ и реализованный с помощью датчика Холла. Он реализует лучшую форму импульсов и их стабильность, причем во всем диапазоне оборотов двигателя. В результате двигатель с БСЗ имеет лучшие мощностные характеристики и топливную экономичность (до 1 л. на 100 км).

Третье преимущество — низкая по сравнению с КСЗ потребность в обслуживании. Нужно только смазывать вал трамблера каждые 10 тыс. км. пробега.

Минусы

Основной недостаток — низкая надежность. Коммутаторы часто выходили из строя после нескольких тысяч пробега. Был разработан модифицированный коммутатор. Он имеет лучшую надежность, но также низка. Поэтому в БСЗ не следует применять отечественные коммутаторы, лучше импортный. При отказе диагностика и ремонт сложны. Особенно в полевых условиях.

Недостаток — обе системы не оптимально устанавливают угол опережения зажигания. Начальный уровень устанавливается вращением трамблера. После трамблер жестко фиксируется, а угол соответствует лишь составу рабочей смеси на момент установки. При изменении параметров топлива, воздуха, температуры и давления — параметры рабочей смеси могут меняться, причем существенно.

В результате начальный уровень установки зажигания не будет соответствовать параметрам смеси.

В процессе работы двигателя для оптимального сгорания рабочей смеси, требуется коррекция угла опережения зажигания. Автоматические регуляторы угла в этих системах, вакуумный и центробежный, грубые и примитивные устройства не отличающиеся стабильностью работы.

Поломки бесконтактной системы зажигания

В бесконтактной системе зажигания возникают похожие проблемы, двигатель начинает сбоить, глохнет, не заводится. Основная масса проблем связана с загрязнением деталей. Зимой на запчастях оседает влага и соль, которой посыпают дороги, летом – пыль, которая проникает во все щели.

Система пуска машины, как и любая часть единой системы, обеспечивает комфортное использование и бесперебойную работу всех узлов. Грамотная эксплуатация, своевременная диагностика, качественный ремонт помогут всем механизмам автомобиля служить долго и работать без поломок.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector